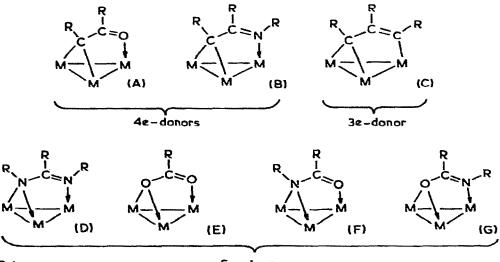
Preliminary communication

RELATED TRIPLY-BRIDGING LIGANDS DERIVED FROM TRIOSMIUM DODECACARBONYL AND FORMAMIDINES OR 2-AMINOPYRIDINES

ANTONY J. DEEMING and ROY PETERS


Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (Great Britain)

(Received September 8th, 1980)

Summary

N,N'-Dibenzyl- or diisopropyl-formamidines react with $Os_3(CO)_{12}$ or $Os_3(CO)_{10}$ (cyclooctene)₂ to give different types of nonacarbonyl, $HOs_3(CO)_9$ (i-PrNCHN-i-Pr) and $H_2Os_3(CO)_9$ (PhCH₂NCHNCH₂C₆H₄), the difference being in the ability of the benzyl group to be *ortho*-metallated. N-Benzyl-2-aminopyridine, on the other hand, gives isomers analogous to each of these clusters.

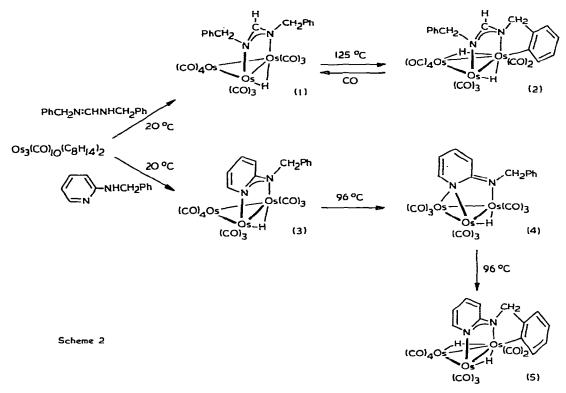
We have synthesised triosmium clusters containing μ_3 -ligands of type A in Scheme 1 from aldehydes, ketones, ketene [1] and phenol and the X-ray

Scheme I

Se-donors

0022-328X/80/0000-0000/\$ 02.25 © 1980 Elsevier Sequoia S.A.

Compound	$\mu(CO)^{b}(cm^{-1})$	¹ H NMR (5, ppm; <i>J</i> , Hz) ^c
HOs ₃ (CO) ₁₀ (PhCH ₂ NCHNCH ₂ Ph) (1)	2106m, 2065s, 2055s, 2022s, 2004s, 1995m, 1986mw, 1975mw	7.87d, J 2 (CH); 7.29–7.14m (C ₆ H ₅); 3.66d, 3.26d, J 14 (CH,): -12.91d, J 2 (OsH)
H ₂ Os ₃ (CO) ₉ (PhCH ₂ NCHNCH ₂ C ₆ H ₄) ^d (2)	2092m, 2058s, 2028s, 2010s, 2004m, 1985m, 1964m	9.48s. (CII); 7.76 -7 ,00 (C ₆ H ₅ + C ₆ H ₅); 4.79d, 4.33d, J 14 (CIL); 4.69d, 4.21d, J 14
		(CH,); -11,83s, -12,17s (OsH)
HOs ₃ (CO) ₁₀ (NC ₅ H ₄ NCH ₂ Ph)	2107m, 2064s, 2057s, 2022s,	8.18dd, 6.89dt, 6.24dd, 5.95dt (NC.H.);
(3)	2012s, 2004m, 1995m, 1986m,	7.0-7.4 (C,H,); 5.02d, 4.54d, J 17
	1975w	(CH,); -11.72s (OsH)
H0s ₃ (CO) ₉ (NC ₅ H ₄ .NCH ₂ ^{Ph})	2085m, 2056s, 2029s, 2000s,	8.66d, 7.34dt, 6.64dt, 6.23dd (NC,H.);
(4)	1990w, 1984m, 1977m, 1965m,	7.3, 6.8-6.9 (C ₆ II,); 5.40d, 4.42d, J 18 (CH.) ^e
	1953m	-11.22s (0s//)
H ₂ Os ₃ (CO) ₉ (NC ₅ H ₄ NCH ₂ C ₆ H ₄) ⁷	2091m, 2058s, 2028s, 2009s,	8.92dd, 7.5-6.0 (NC,H, + C,H.); 4.82d, 4.40d,
(b)	2005m, 1988m, 1984m, 1964s,	J 14 (CH ₂); -11.08s, -12.31s (0sH)
	1933w	
HOs ₃ (CO) ₉ (i-PrNCHNPr-i)	2084m, 2054s, 2027s, 1999s,	9.03s (CH); 3.48sept, 2.37sept (CHMe,);
	1989vw, 1980s, 1965m, 1950m, 1937vw	1.10d, 1.03d (CH ₃): -11.46s (OsH)


÷

.

TABLE 1

structure of $H_2Os_3(CO)_9(PhCH_2C_6H_3O)$ from 2-benzylphenol contains an arrangement of atoms as in A [2]. The recently described cluster $H_2Os_3(CO)_9$ -(i-PrCCMe=NPh) adopts the corresponding structure B [3]. Based on A and B one can easily imagine the 3*e*- and 5*e*-donating ligands depicted in C to G. C is simply the σ -allyl (3*e*-donating) form of the pseudo- π -allyl (5*e*-donating) ligands well-known for ruthenium and osmium. To our knowledge no system of type C has been synthesised. Forms D to G are variations on μ_3 -carboxyl-ates. Our attempts to thermally decarbonylate $HOs_3(CO)_{10}(\mu_2-PhCO_2)$ have lead to a range of low yield products, none of which seems to be $HOs_3(CO)_9$ -(μ_3 -PhCO₂) [4]. We have, however, synthesised ligand systems of type D and F or G.

Attempting to prepare clusters of type D, $PhCH_2N=CHNHCH_2Ph$ was treated at room temperature with the bis-cyclooctene cluster $Os_3(CO)_{10}$ - $(C_8H_{14})_2$ [5] in a mixture of C_8H_{14} and CH_2Cl_2 to give cluster 1 (15%) (Scheme 2). We expected the thermolysis of this in refluxing octane (1 h) to give a μ_3 -PhCH₂NCHNCH₂Ph cluster of type D but obtained instead the orthometallated cluster $H_2Os_3(CO)_9(PhCH_2NCHNCH_2C_6H_4)$ (2) (47%). This was isolated by TLC (SiO₂) like all the new clusters described in this paper and

was characterised spectroscopically (Table 1). The corresponding reaction of N-benzyl-2-aminopyridine with $Os_3(CO)_{10}(C_8H_{14})_2$ gave cluster 3 (33%). Thermolysis of this complex leads to a more rapid decarbonylation and in refluxing heptane after 45 min a mixture of isomeric clusters 4 (36%) and 5 (38%). Since cluster 4 converts into 5 in refluxing heptane, no doubt this is

the route by which 5 was formed. Thus although we were able to obtain a cluster of type D, this readily isomerised by an *ortho*-metallation. Clusters 1 and 3 are directly comparable spectroscopically, as are 2 and 5, and must adopt the same overall structures (Scheme 2).

It seems quite likely that 2 is formed from 1 via the cluster $HOs_3(CO)_9$ -(μ_3 -PhCH₂NCHNCH₂Ph) which was not observed because of its ease of isomerisation. The reaction of $Os_3(CO)_{12}$ with i-PrN=CHNHPr-i supports this view since after 2.5 h in refluxing octane the cluster $HOs_3(CO)_9(\mu_3$ -i-PrNCHNPr-i) (6) was obtained. The need for the ligand to donate 5e to the cluster and the close similarity between 4 and 6 strongly indicates that these ligands are triplybridging as shown. Thus the absence of a substituent on the nitrogen atoms that can easily ortho-metallate allows complexes of type D to be formed, and both 2-hydroxypyridine (pyridone) and 2-aminopyridine give the clusters $HOs_3(CO)(\mu_3-NC_5H_4X)$ (X = O or NH) [6] which directly relate to cluster 4 and are of types D and F or G, respectively.

 $Os_3(CO)_{12}$ reacts readily in refluxing acetic acid to give $Os_2(CO)_6(u_2-MeCO_2)_2$ [7] and the N-compounds in this paper are similar except that more forcing conditions are required to give the dinuclear compounds $Os_2(CO)_6(u_2-X)_2$ (X = NC_5H_4O from pyridone, NC_5H_4NH from 2-aminopyridine, PhCH₂NCHNCH₂Ph from dibenzylformamidine and i-PrNCHNPr-i from diisopropylformamidine). We believe that the tendency for acetate to bridge is low and so the trinuclear clusters more readily breakdown into dimers than those of the corresponding N-ligands. Although we have not made any clusters of types C and E almost certainly they will be available by other routes. Furthermore, clusters with the ligand CRCRCR prefer to adopt the pseudo- π -allyl form rather than structure C and so one might expect there to be a range of complexes parallel to A to G but with two extra electrons donated from the multiple bonds.

We thank Johnson-Matthey Ltd for a loan of OsO_4 and University College London for a studentship (for R.P.).

References

- 1 K.A. Azam and A.J. Deeming, J. Chem. Soc., Chem. Commun., (1977) 472; K.A. Azam, A.J. Deeming and I.P. Rothwell, J. Chem. Soc., Dalton Trans., in press.
- 2 K.A. Azam, A.J. Deeming, I.P. Rothwell, M.B. Hursthouse, and L. New, J. Chem. Soc., Chem. Commun., (1978) 1086.
- 3 R.D, Adams and J.P. Selegue, Inorg. Chem., 19 (1980) 1795.
- 4 K.A. Azam and A.J. Deeming, unpublished results.
- 5 J.R. Shapley, M. Tachikawa, J. Organometal. Chem., 124 (1977) 124.
- 6 A.J. Deeming and R. Peters, unpublished results.
- 7 G.R. Crooks, B.F.G. Johnson, J. Lewis, I.G. Williams, G. Gamlen, J. Chem. Soc. A, (1969) 2761.